10 research outputs found

    Quiescent current testing of CMOS data converters

    Get PDF
    Power supply quiescent current (IDDQ) testing has been very effective in VLSI circuits designed in CMOS processes detecting physical defects such as open and shorts and bridging defects. However, in sub-micron VLSI circuits, IDDQ is masked by the increased subthreshold (leakage) current of MOSFETs affecting the efficiency of I¬DDQ testing. In this work, an attempt has been made to perform robust IDDQ testing in presence of increased leakage current by suitably modifying some of the test methods normally used in industry. Digital CMOS integrated circuits have been tested successfully using IDDQ and IDDQ methods for physical defects. However, testing of analog circuits is still a problem due to variation in design from one specific application to other. The increased leakage current further complicates not only the design but also testing. Mixed-signal integrated circuits such as the data converters are even more difficult to test because both analog and digital functions are built on the same substrate. We have re-examined both IDDQ and IDDQ methods of testing digital CMOS VLSI circuits and added features to minimize the influence of leakage current. We have designed built-in current sensors (BICS) for on-chip testing of analog and mixed-signal integrated circuits. We have also combined quiescent current testing with oscillation and transient current test techniques to map large number of manufacturing defects on a chip. In testing, we have used a simple method of injecting faults simulating manufacturing defects invented in our VLSI research group. We present design and testing of analog and mixed-signal integrated circuits with on-chip BICS such as an operational amplifier, 12-bit charge scaling architecture based digital-to-analog converter (DAC), 12-bit recycling architecture based analog-to-digital converter (ADC) and operational amplifier with floating gate inputs. The designed circuits are fabricated in 0.5 μm and 1.5 μm n-well CMOS processes and tested. Experimentally observed results of the fabricated devices are compared with simulations from SPICE using MOS level 3 and BSIM3.1 model parameters for 1.5 μm and 0.5 μm n-well CMOS technologies, respectively. We have also explored the possibility of using noise in VLSI circuits for testing defects and present the method we have developed

    Dynamically mapping tasks with priorities and multiple deadlines in a heterogeneous environment

    Get PDF
    Includes bibliographical references (pages 166-167).In a distributed heterogeneous computing system, the resources have different capabilities and tasks have different requirements. To maximize the performance of the system, it is essential to assign the resources to tasks (match) and order the execution of tasks on each resource (schedule) to exploit the heterogeneity of the resources and tasks. Dynamic mapping (defined as matching and scheduling) is performed when the arrival of tasks is not known a priori. In the heterogeneous environment considered in this study, tasks arrive randomly, tasks are independent (i.e., no inter-task communication), and tasks have priorities and multiple soft deadlines. The value of a task is calculated based on the priority of the task and the completion time of the task with respect to its deadlines. The goal of a dynamic mapping heuristic in this research is to maximize the value accrued of completed tasks in a given interval of time. This research proposes, evaluates, and compares eight dynamic mapping heuristics. Two static mapping schemes (all arrival information of tasks are known) are designed also for comparison. The performance of the best heuristics is 84% of a calculated upper bound for the scenarios considered

    Carbon Nanotubes - Polymer Nanocomposites

    No full text
    Polymer nanocomposites are a class of material with a great deal of promise for potential applications in various industries ranging from construction to aerospace. The main difference between polymeric nanocomposites and conventional composites is the filler that is being used for reinforcement. In the nanocomposites the reinforcement is on the order of nanometer that leads to a very different final macroscopic property. Due to this unique feature polymeric nanocomposites have been studied exclusively in the last decade using various nanofillers such as minerals, sheets or fibers. This books focuses on the preparation and property analysis of polymer nanocomposites with CNTs (fibers) as nano fillers. The book has been divided into three sections. The first section deals with fabrication and property analysis of new carbon nanotube structures. The second section deals with preparation and characterization of polymer composites with CNTs followed by the various applications of polymers with CNTs in the third section

    MEMS Sensors - Design and Application

    No full text
    MEMS by becoming a part of various applications ranging from smartphones to automobiles has become an integral part of our everyday life. MEMS is building synergy between previously unrelated fields such as biology, microelectronics and communications, to improve the quality of human life. The sensors in MEMS gather information from the surrounding, which is then processed by the electronics for decision-making to control the environment. MEMS offers opportunities to miniaturize devices, integrate them with electronics and realize cost savings through batch fabrication. MEMS technology has enhanced many important applications in domains such as consumer electronics, biotechnology and communication and it holds great promise for continued contributions in the future. This book focuses on understanding the design, development and various applications of MEMS sensors

    Carbon Nanotubes - Synthesis, Characterization, Applications

    No full text
    Carbon nanotubes are one of the most intriguing new materials with extraordinary properties being discovered in the last decade. The unique structure of carbon nanotubes provides nanotubes with extraordinary mechanical and electrical properties. The outstanding properties that these materials possess have opened new interesting researches areas in nanoscience and nanotechnology. Although nanotubes are very promising in a wide variety of fields, application of individual nanotubes for large scale production has been limited. The main roadblocks, which hinder its use, are limited understanding of its synthesis and electrical properties which lead to difficulty in structure control, existence of impurities, and poor processability. This book makes an attempt to provide indepth study and analysis of various synthesis methods, processing techniques and characterization of carbon nanotubes that will lead to the increased applications of carbon nanotubes

    Dynamic mapping in a heterogeneous environment with tasks having priorities and multiple deadlines

    Get PDF
    In a distributed heterogeneous computing system, the resources have different capabilities and tasks have different requirements. To maximize the performance of the system, it is essential to assign resources to tasks (match) and order the execution of tasks on each resource (schedule) in a manner that exploits the heterogeneity of the resources and tasks. The mapping (defined as matching and scheduling) of tasks onto machines with varied computational capabilities has been shown, in general, to be an NP-complete problem. Therefore, heuristic techniques to find a near-optimal solution to this mapping problem are required. Dynamic mapping is performed when the arrival of tasks is not known a priori. In the heterogeneous environment considered in this study, tasks arrive randomly, tasks are independent (i.e., no communication among tasks), and tasks have priorities and multiple deadlines. Thi
    corecore